4 research outputs found

    Precision near-infrared radial velocity instrumentation II: Non-Circular Core Fiber Scrambler

    Get PDF
    We have built and commissioned a prototype agitated non-circular core fiber scrambler for precision spectroscopic radial velocity measurements in the near-infrared H band. We have collected the first on-sky performance and modal noise tests of these novel fibers in the near-infrared at H and K bands using the CSHELL spectrograph at the NASA InfraRed Telescope Facility (IRTF). We discuss the design behind our novel reverse injection of a red laser for co-alignment of star-light with the fiber tip via a corner cube and visible camera. We summarize the practical details involved in the construction of the fiber scrambler, and the mechanical agitation of the fiber at the telescope. We present radial velocity measurements of a bright standard star taken with and without the fiber scrambler to quantify the relative improvement in the obtainable blaze function stability, the line spread function stability, and the resulting radial velocity precision. We assess the feasibility of applying this illumination stabilization technique to the next generation of near-infrared spectrographs such as iSHELL on IRTF and an upgraded NIRSPEC at Keck. Our results may also be applied in the visible for smaller core diameter fibers where fiber modal noise is a significant factor, such as behind an adaptive optics system or on a small < 1 meter class telescope such as is being pursued by the MINERVA and LCOGT collaborations.Comment: Proceedings of the SPIE Optics and Photonics Conference "Techniques and Instrumentation for Detection of Exoplanets VI" held in San Diego, CA, August 25-29, 201

    Architecture design study and technology road map for the Planet Formation Imager (PFI)

    Get PDF
    The Planet Formation Imager (PFI) Project has formed a Technical Working Group (TWG) to explore possible facility architectures to meet the primary PFI science goal of imaging planet formation in situ\textit{in situ} in nearby star-forming regions. The goals of being sensitive to dust emission on solar system scales and resolving the Hill-sphere around forming giant planets can best be accomplished through sub-milliarcsecond imaging in the thermal infrared. Exploiting the 8-13 micron atmospheric window, a ground-based long-baseline interferometer with approximately 20 apertures including 10km baselines will have the necessary resolution to image structure down 0.1 milliarcseconds (0.014 AU) for T Tauri disks in Taurus. Even with large telescopes, this array will not have the sensitivity to directly track fringes in the mid-infrared for our prime targets and a fringe tracking system will be necessary in the near-infrared. While a heterodyne architecture using modern mid-IR laser comb technology remains a competitive option (especially for the intriguing 24 and 40µm atmospheric windows), the prioritization of 3-5µm observations of CO/H2_2O vibrotational levels by the PFI-Science Working Group (SWG) pushes the TWG to require vacuum pipe beam transport with potentially cooled optics. We present here a preliminary study of simulated L- and N-band PFI observations of a realistic 4-planet disk simulation, finding 21x2.5m PFI can easily detect the accreting protoplanets in both L and N-band but can see non-accreting planets only in L band. We also find that even an ambitious PFI will lack sufficient surface brightness sensitivity to image details of the fainter emission from dust structures beyond ~5 AU, unless directly illuminated or heated by local energy sources. That said, the utility of PFI at N-band is highly dependent on the stage of planet formation in the disk and we require additional systematic studies in conjunction with the PFI-SWG to better understand the science capabilities of PFI, including the potential to resolve protoplanetary disks in emission lines to measure planet masses using position-velocity diagrams. We advocate for a specific technology road map in order to reduce the current cost driver (telescopes) and to validate high accuracy fringe tracking and high dynamic range imaging at L, M band. In conclusion, no technology show-stoppers have been identified for PFI to date, however there is high potential for breakthroughs in medium-aperture (4-m class) telescopes architecture that could reduce the cost of PFI by a factor of 2 or more.This is the author accepted manuscript. The final version is available from SPIE via http://dx.doi.org/10.1117/12.223331

    Status of the Planet Formation Imager (PFI) concept

    No full text
    14 pages, 5 figures, Proceedings of SPIE 2016International audienceThe Planet Formation Imager (PFI) project aims to image the period of planet assembly directly, resolving structures as small as a giant planet's Hill sphere. These images will be required in order to determine the key mechanisms for planet formation at the time when processes of grain growth, protoplanet assembly, magnetic fields, disk/planet dynamical interactions and complex radiative transfer all interact - making some planetary systems habitable and others inhospitable. We will present the overall vision for the PFI concept, focusing on the key technologies and requirements that are needed to achieve the science goals. Based on these key requirements, we will define a cost envelope range for the design and highlight where the largest uncertainties lie at this conceptual stage

    Planet Formation Imager: project update

    No full text
    International audienceThe Planet Formation Imager (PFI) is a near- and mid-infrared interferometer project with the driving sciencegoal of imaging directly the key stages of planet formation, including the young proto-planets themselves. Here,we will present an update on the work of the Science Working Group (SWG), including new simulations of duststructures during the assembly phase of planet formation and quantitative detection efficiencies for accretingand non-accreting young exoplanets as a function of mass and age. We use these results to motivate tworeference PFI designs consisting of a) twelve 3 m telescopes with a maximum baseline of 1.2 km focused onyoung exoplanet imaging and b) twelve 8 m telescopes optimized for a wider range of young exoplanets andprotoplanetary disk imaging out to the 150 K H2O ice line. Armed with 4×8 m telescopes, the ESO/VLTI canalready detect young exoplanets in principle and projects such as MATISSE, Hi-5 and Heimdallr are important PFI pathfinders to make this possible. We also discuss the state of technology development needed to makePFI more affordable, including progress towards new designs for inexpensive, small field-of-view, large aperturetelescopes and prospects for Cubesat-based space interferometr
    corecore